Probabilistic Alert Correlation

نویسندگان

  • Alfonso Valdes
  • Keith Skinner
چکیده

With the growing deployment of host and network intrusion detection systems, managing reports from these systems becomes critically important. We present a probabilistic approach to alert correlation, extending ideas from multisensor data fusion. Features used for alert correlation are based on alert content that anticipates evolving IETF standards. The probabilistic approach provides a unified mathematical framework for correlating alerts that match closely but not perfectly, where the minimum degree of match required to fuse alerts is controlled by a single configurable parameter. Only features in common are considered in the fusion algorithm. For each feature we define an appropriate similarity function. The overall similarity is weighted by a specifiable expectation of similarity. In addition, a minimum similarity may be specified for some or all features. Features in this set must match at least as well as the minimum similarity specification in order to combine alerts, regardless of the goodness of match on the feature set as a whole. Our approach correlates attacks over time, correlates reports from heterogeneous sensors, and correlates multiple attack steps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-Time intrusion detection alert correlation and attack scenario extraction based on the prerequisite consequence approach

Alert correlation systems attempt to discover the relations among alerts produced by one or more intrusion detection systems to determine the attack scenarios and their main motivations. In this paper a new IDS alert correlation method is proposed that can be used to detect attack scenarios in real-time. The proposed method is based on a causal approach due to the strength of causal methods in ...

متن کامل

Alert Correlation for Extracting Attack Strategies

Alert correlation is an important technique for managing large the volume of intrusion alerts that are raised by heterogenous Intrusion Detection Systems (IDSs). The recent trend of research in this area is towards extracting attack strategies from raw intrusion alerts. It is generally believed that pure intrusion detection no longer can satisfy the security needs of organizations. Intrusion re...

متن کامل

Alert correlation and prediction using data mining and HMM

Intrusion Detection Systems (IDSs) are security tools widely used in computer networks. While they seem to be promising technologies, they pose some serious drawbacks: When utilized in large and high traffic networks, IDSs generate high volumes of low-level alerts which are hardly manageable. Accordingly, there emerged a recent track of security research, focused on alert correlation, which ext...

متن کامل

Heterogeneous Sensor Correlation: A Case Study of Live Traffic Analysis

As enterprises deploy multiple intrusion detection sensors at key points in their networks, the issue of correlating messages from these sensors becomes increasingly important. A correlation capability reduces alert volume, and potentially improves detection performance through sensor reinforcement or complementarity. Correlation is especially advantageous when heterogeneous sensors are employe...

متن کامل

Intrusion Alert Correlation Technique Analysis for Heterogeneous Log

Intrusion alert correlation is multi-step processes that receives alerts from heterogeneous log resources as input and produce a high-level description of the malicious activity on the network. The objective of this study is to analyse the current alert correlation technique and identify the significant criteria in each technique that can improve the Intrusion Detection System (IDS) problem suc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001